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Large-scale image datasets and deep convolutional neural networks (DCNNs) are the two primary driving 4
forces for the rapid progress in generic object recognition tasks in recent years. While lots of network archi- 5
tectures have been continuously designed to pursue lower error rates, few efforts are devoted to enlarging 6
existing datasets due to high labeling costs and unfair comparison issues. In this article, we aim to achieve 7
lower error rates by augmenting existing datasets in an automatic manner. Our method leverages both the 8
web and DCNN, where the web provides massive images with rich contextual information, and DCNN re- 9
places humans to automatically label images under the guidance of web contextual information. Experiments 10
show that our method can automatically scale up existing datasets significantly from billions of web pages 11
with high accuracy. The performance on object recognition tasks and transfer learning tasks have been signif- 12
icantly improved by using the automatically augmented datasets, which demonstrates that more supervisory 13
information has been automatically gathered from the web. Both the dataset and models trained on the dataset 14
have been made publicly available. 15
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1 INTRODUCTION25

Generic object recognition is a fundamental problem in multimedia and computer vision and has26
achieved steady progress with efforts from both large-scale dataset construction and sophisticated27
model design. Though the goal is to minimize expected errors on previously unseen images, only28
empirical errors can be directly optimized on a set of labeled images with respect to a function29
space defined by a model. According to statistical learning theory, the gap between expected error30
and empirical error is determined by the sample size and model capacity. The gap becomes smaller31
with increasing sample size, and model design tries to minimize the expected error by defining a32
function space to minimize the empirical error and control the model capacity. Starting from the33
success of AlexNet [18] on the ILSVRC-2012 dataset [4, 27], years of effort have been devoted to34
model designing, and a series of improved deep convolutional neural networks (DCNNs) such as35
ZFNet [45], VGGNet [29], GoogLeNet [32], and ResNet [10] are proposed. There are also many36
efforts to create new datasets for new recognition tasks [16, 22, 38, 41, 47]. However, there is little37
effort to increase an existing dataset to make the empirical error closer to the expected error,38
mainly for two reasons: one is the labeling cost scales linearly with the size of the dataset, the39
other is that using more human labeling to achieve better results is usually considered to be unfair40
comparison. In this article, we attempt to automatically augment1 an existing dataset from the web41
with a pre-trained DCNN on the existing dataset.42

The web hosts massive images with rich contextual information and the volume keeps growing43
fast, which makes many applications possible such as image search engines [46] and semantic44
graph building [11]. The web is also the basic source of many datasets, which are scraped from45
search engines without further human labeling [2, 17, 31, 35, 42, 44]. An image on a web page often46
comes with rich contextual information edited by web authors. For examplealt text can convey47
the essential visual information and can be used to replace the associated image in a pure text-48
based browser, page title describes what is the whole web page is about, and surrounding text49
around the image that are related to the image content in some manner. Nevertheless, contextual50
information is not purposely edited to annotate image content; it is often quite noisy. The noisy51
web information is often used as a weakly supervised dataset for many multimedia tasks, e.g.,52
image annotation [39], visual concept learning [6], and image retrieval [21].53

DCNNs trained on large-scale datasets have achieved superior performance, which inspires us54
to investigate the possibility to use DCNN replace humans to do the laborious labeling task. In55
our early study, we found that DCNN trained on ImageNet performs much worse on web images,56
due to that both images and categories are not following the same distribution as the training set,57
and results in many false positives for each category. The problem can be alleviated by setting58
high thresholds for the prediction score; however, in this way, the collected images can provide59
limited additional information to improve the pre-trained DCNN since the DCNN is already quite60
confident on these images.61

DCNN extracts image’s visual information while the web provides an image’s contextual in-62
formation, which is complementary and can jointly provide additional information to an existing63
dataset. The noise of contextual information can be removed by the DCNN using visual infor-64
mation, while rich contextual information helps to achieve high prediction accuracy, even with a65
lower threshold for the prediction score of a DCNN. Together, we can augment an existing dataset66
in a scalable, accurate, and informative way. Specifically, we automatically augment ILSVRC-201267
with an additional 12.5 million images from the web. By training the same DCNN on the augmented68

1This is different with the common practice of data augmentation for DCNN training, which randomly crops training
samples from an image to avoid overfitting and achieve translation/scale invariance.
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dataset without human-labeled images, significant performance gains are observed, which demon- 69
strates a well-trained DCNN can further improve itself by self-labeling more images from the web. 70
Another encouraging experimental result is that we can boost the performance of ResNet-50 on 71
the ILSVRC-2012 validation set from 74.55% to 77.35%, even by using our augmented dataset, which 72
is labeled by the lower performance AlexNet. We release the dataset and models2 to facilitate the 73
research on learning-based object recognition and transfer learning tasks. 74

The rest of this article proceeds as follows: After an overview of related work in Section 2, 75
automatic dataset augmentation is introduced in Section 3. We evaluate the quality of augmented 76
datasets in Section 4, and conclude with a discussion in Section 5. 77

2 RELATED WORK 78

Dataset is the basic input for statistical learning algorithms to train models, and significant efforts 79
have been made to construct datasets for various recognition tasks. In this section, we discuss 80
related efforts according to the degree of labor cost during constructing datasets. 81

2.1 No Human Labeling 82

Some datasets are directly collected from image search engines or social networks without human 83
labeling. TinyImage [35] contains 80 million 32 × 32 low resolution images, collected from image 84
search engines by using nouns in WordNet as queries. YFCC100M [33] is another large database of 85
approximately 100 million images associated with metadata collected from Flickr. Krause et al. [15] 86
only use web images to fine-tune DCNN pre-trained on ILSVRC-2012 for fine-grained classification 87
and get even higher accuracies than using fine-grained benchmark datasets, which is expected 88
since existing fine-grained benchmark datasets are quite small. Phong et al. [36] collect 3.14 million 89
web images from Bing and Flickr for the same 1,000 categories of ILSVRC-2012. 90

Massouh et al. [24] proposed a framework to collect images from the web and use a visual and 91
natural language concept expansion strategy to improve the visual variability of a constructed 92
dataset. Li et al. [20] also constructed a dataset by directly querying images from Flickr and Google 93
Images Search. However, DCNN trained on all of these automatically constructed datasets perform 94
much worse than human-labeled datasets when testing on ILSVRC-2012, which reflects the noisy 95
and highly biased nature of web images. 96

Recently, Sun et al. [31] constructed a large-scale dataset from a search engine, the dataset has 97
300 million images and is labeled with 18,291 categories; however, this dataset is still noise in 98
labels: approximately 20% of the labels in the dataset are noisy. 99

2.2 Fully Human Labeling 100

Each image is manually labeled by one or multiple annotators to ensure high accuracy. Due to the 101
high labeling cost, datasets constructed by fully labeling are often with small size. Some typical 102
datasets are Caltech101/256 [7, 8], Pascal VOC [5], and several for fine-grained object recogni- 103
tion [14, 23, 37]. These datasets are widely used for shallow model learning, while not large enough 104
to train a DCNN from scratch. Though challenging, million scale datasets have been constructed, 105
such as ImageNet [4] for object recognition and Places [47] for scene recognition. With ImageNet, 106
DCNN first proves its success and improves most object recognition tasks by the learned feature 107
representations [18]. However, the high labeling cost limits both the number of images that can 108
be labeled for each category, and the number of categories that can be labeled. 109

2The dataset and models can be found at https://auto-da.github.io/.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 3, Article 69. Publication date: July 2018.

https://auto-da.github.io/


TOMM1403-69 ACMJATS Trim: 6.75 X 10 in July 4, 2018 16:28

69:4 Y. Bai et al.

2.3 Partially Human Labeling110

To alleviate human-labeling cost and use the limited budget in more effective ways, there are111
several active learning-based approaches are proposed to label images that are considered as in-112
formative for a model. Collins et al. [3] propose a method to do image labeling and model training113
iteratively. In their work, some randomly selected images are first labeled as seed training set to114
train an initial model, then the model is applied to a set of unlabeled images; at last, human an-115
notators are further asked to label a subset of images of which the model is mostly uncertain.116
The process is iterated until the classification accuracy converges or the budget is run out. Krause117
et al. [15] present a similar scheme for fine-grained object recognition by using DCNN. Since infor-118
mative images are selected based on some specific model, human involvement is always required119
for newly designed models.120

To decouple human labeling from model training, Tong et al. [40] propose to train DCNN for121
clothing classification with both a clean dataset manually labeled by annotators and millions of122
images with noisy labels provided by sellers from online shopping websites. Though noisy, the123
accuracy of images from online shopping websites (∼62% [40]) is much higher than general web124
images (∼10% [35]). Sukhbaatar et al. [30] try to train DCNN with 0.3M clean ILSVRC-2012 training125
images and 0.9M noisy web images, and show marginal improvement with a noise layer to model126
noise, but still with much higher error rate than DCNN directly trained on 1.2M ILSVRC-2012127
training images.128

Different from the work of Li et al. [19], which aims to learn robust image classifiers by con-129
sidering the noisy textual information accompanied with web images, in this article, we try to130
automatically scale up an existing image data in an automatically way. Moreover, both the high131
diversity and high accuracy should be ensured for the constructed dataset. Since the accuracy of132
web images is relatively low, the number of web images needs to be orders of magnitude larger133
than existing datasets to contain enough relevant images. Thus, we aim to use as many web im-134
ages as possible; till July 30, 2017, we have used 186.4 million web images as candidate images135
to augment several labeled image datasets. These augmented image datasets achieve high perfor-136
mance on object recognition tasks than human-labeled datasets with significantly more training137
images. To the best of our knowledge, this is the first work that uses DCNN to label web images138
and demonstrates a well-trained DCNN can automatically improve itself by surfing the web.139

3 AUTOMATIC DATASET AUGMENTATION140

Starting from a human-labeled image dataset D, we are targeting at augmenting it to a much141
larger dataset D ∪ E, where E is automatically labeled from web images by a DCNN trained on142
D. Labeling images is an intelligent process, which requires sufficient intelligence and knowledge.143
In this section, we will first investigate two separated labeling methods by DCNN and the web,144
respectively, then present our method, which labels image by the web and DCNN jointly. Without145
special mention, AlexNet designed by Krizhevsky et al. [18] will be used as the basic DCNN in this146
article, considering it is with a relatively low computational cost for large-scale experiments.147

3.1 Labeling By DCNN148

DCNNs have achieved remarkable prediction accuracy on validation set and testing set of ILSVRC-149
2012 [27] by end-to-end learning on the training set, which inspires us to use DCNN to replace150
humans to do image-labeling tasks. We defined the “confidence score” of a given image I relevant to151
category c as the probability for c by DCNN. Given a DCNN trained on the labeled datasetD, which152
maps an image I to a set of confidence scores fc (I ) for each pre-defined category c ∈ {1, . . . ,C}, it153
is intuitive to use it for image labeling. A new image I can be labeled as an instance of a category154
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Fig. 1. The distributions of quantity and accuracy of dataset EV across confidence threshold α .

c if I has a confidence score of c exceeds some predefined threshold α , i.e., 155

fc (I ) ≥ α . (1)

To avoid ambiguity, images with multiple labels that exceed the threshold are ignored. Then an 156
augmented dataset EV can be labeled by applying the DCNN on a large unlabeled image set U , 157
i.e., 158

EV = {〈I , c〉 : fc (I ) ≥ α , I ∈ U , c ∈ {1, . . . ,C}}. (2)

The labeling process is fully automatic, which only requires feedforward calculation on an unla- 159
beled image set. We investigate this method by using the DCNN learned from the ILSVRC-2012 160
training set to label an unlabeled candidate image set randomly collected from the web. By ana- 161
lyzing the labeling results, we find several properties of labeling by DCNN. 162

Low Accuracy. Figure 1 shows the quantity and accuracy of automatically labeled dataset EV by 163
setting different thresholds α , where accuracy is estimated by manually inspecting randomly sam- 164
pled images (10 images per category) from 100 categories in the constructed dataset. As expected, 165
a higher threshold will result in a smaller dataset with higher accuracy. However, even with the 166
relatively high threshold 0.9, the achieved accuracy 75.5% is still much lower than the accuracy 167
99.7% achieved by human labeler on ImageNet [4]. Figure 2 shows some incorrectly labeled false 168
positive images, where most noises are out of the 1,000 categories used for training, but visually 169
similar to these categories in some aspects. The result also shows that the DCNN is still hard to 170
generalize to a testing set with many out-of-class images. 171

Less Informative. Higher accuracy can be obtained by keeping increasing the threshold. However, 172
this will cause two problems. One is the number of images that can be collected will be reduced for 173
a fixed unlabeled dataset, and the unlabeled dataset needs to grow larger to collect enough images. 174
The other problem is even worse, images labeled by high confidence scores are iconic samples and 175
with high similarity with images in the existing training set, as shown in the third row of Figure 3. 176
These images can bring little new supervisory information to the existing training set. 177

3.2 Labeling by the Web 178

The web hosts trillions of images with rich metadata, which provides a “free” way to label im- 179
ages since labels are already in the metadata provided by web users. Image search engines directly 180
leverage these metadata to index massive web images and make them retrievable. Though im- 181
age search engines provide a convenient way to collect web images by searching words or word 182
phrases that describe a category, they are with several limitations for dataset construction because 183
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Fig. 2. Noisy images that predicted one of the categories with high confidence by DCNN. The first column

in this figure shows an example image from the labeled dataset for each category. The other columns show

noisy images from unlabeled dataset with high-confidence DCNN predictions for the categories in a different

row, respectively. The confidence scores are shown on each noisy image.

they are optimized for human users. For example, search engines typically limit the number of im-184
ages retrievable for each query (in the order of a few hundred to a thousand), and the retrieved185
images are often iconic, presenting a single, centered object with a simple background, which is186
not representative of natural conditions. Thus, we directly resort to raw images with textual meta-187
data from the web as our source data. Specifically, four textual fields are collected for each image,188
including:189

—Anchor textT 1 is the visible, clickable text in a hyperlink linked to an image, which usually190
gives the user relevant description about the content of the linked image.191

—Alt textT 2 is shown when an image cannot be displayed to a reader. Thus, it can be regarded192
as a textual counterpart to the visual content of an image.193

—Page title T 3 is an important field for the page to state the main content of the web page.194
—Surrounding text T 4 consists of the text paragraphs around an image in a web page. The195

surrounding text is in many cases semantically related to the image content. However, since196
the surrounding text can also contain information that is uncorrelated to the image, this field197
as a contextual information source can be very noisy.198

Then a data item from the web can be denoted by 〈I ,T 1,T 2,T 3,T 4〉. Figure 4 shows a web image199
and its four types of textual metadata, where rich information about goldfinch” is embedded in200
metadata for the image.201

Given a web image dataset denoted byW = {〈Ii ,T 1
i ,T

2
i ,T

3
i ,T

4
i 〉}
|W |
i=1 , then labeling by the web202

can be directly carried out through string match. |W| is the number of elements of the closed set203
W . Let each category c be represented by a set of word phrases from its WordNet synonyms [25]204
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Fig. 3. Snapshots of human-labeled dataset ImageNet and four automatically constructed datasets on six

randomly sampled categories in ILSVRC-2012: the first row is from the ImageNet; the second and third

row are from the dataset labeled by DCNN with confidence threshold α = 0.1 and α = 0.9, respectively; the

fourth row is from the dataset labeled by the web; the last row is from the dataset labeled jointly by DCNN

and the web with confidence threshold α = 0.1,α ′ = 0.01. For each category,nine randomly sampled images

are presented. Images marked with red boxes are noisy images.

and relevant descriptions in 12 different languages (including AR, ZH, EN, FR, DE, EL, HE, HI, IT, 205
JA, RU, ES) from BabelNet [26], denoted by Sc = {sj } |Sc |

j=1 . An image Ii is labeled as an instance of 206
category c if at least one textual field contains at least one element in Sc , i.e., 207

δc
i =

{
1 : sj ⊆ T k

i ,∃sj ∈ Sc ,∃k ∈ {1, . . . , 4}
0 : otherwise

. (3)

Then an augmented dataset ET can be labeled by web dataW , i.e., 208

ET = {〈I , c〉 : δc
i = 1, i ∈ {1, . . . , |W|}, c ∈ {1, . . . ,C}}. (4)

The labeling process is also fully automatic and very fast after W has been collected. By the 209
method, we collect a dataset with 186.4 million images for the 1,000 categories from ILSVRC-2012 210
dataset. Here, we summarize several properties observed from the dataset. 211

Figure 5 shows the percentage of images collected by each textual field. We can find that sur- 212
rounding text has the greatest contribution since most images are with surrounding texts and 213
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Fig. 4. Illustration of the textual metadata associated with an image in a web page. The web page used in

this figure is from http://www.bbc.co.uk/nature/life/European_Goldfinch.

Fig. 5. The proportion of images collected according to different fields of textual metadata.

typically contain more words than other fields, while the number of images collected by anchor214
text is much smaller than other fields since anchor texts are typically very short and often not215
provided by web authors.216

Besides the quantity, we also check the quality of the collected dataset. To avoid manually217
checking, we use the DCNN to calculate the confidence score of the labeled category of each218
image in ET , and large confidence score means a large probability of the labeled image to be219
correct. Figure 6 shows the distribution of confidence scores by different textual fields, where220
images collected by anchor text and alt text are with the larger proportion of high confidence221
scores, which also means these two fields are more reliable than the others. The conclusion is also222
consistent with experiences of using textual features for image search engines.3223

However, as expected, images collected from the web are very noisy, where 82.8% images are224
with confidence scores lower than 0.05. After analyzing the noisy images, we find that the noisy225
images can be divided into two different types. One is that the image and its relevant textual meta-226
data is not matching, since the poor quality of some web pages are attached with many irrelevant227
images. The other type of noise is introduced by ambiguities between the meaning of category and228
the textual metadata. A typical example is a category named “jay,” which is supposed to be a bird229
by WordNet, lots of images about humans are collected since “jay” is often used as a human name.230
Though these noisy images are hard to remove by only using textual information, they are easy231
to remove by visual information since images of different senses of a name are typically visually232
distinguishable as Yao et al. [43] demonstrated.233

3https://support.google.com/webmasters/answer/114016?hl=en.
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Fig. 6. The distributions of percent of images across confidence scores under different kinds of contextual

information.

3.3 Labeling by Web and DCNN 234

Both visual labeling by DCNN and contextual labeling by the web have their limitations. For 235
datasets labeled by DCNN, many noisy images are from categories that are out of the category 236
set used for training DCNN, which can be easily filtered out according to semantic information. 237
Meanwhile, for dataset labeled by the metadata of web, both of the visual irrelevant noisy images 238
and semantic ambiguous noisy images can be easily removed by visual information, due to that 239
the visual irrelevance images have very low confidence scores, and images of different senses of 240
a name are typically visually distinguishable. Thus, we combine them to improve the labeling by 241
leveraging their complementarity. We learned from the above experience that labeling by DCNN 242
is more computational cost and tend to spend too much time on popular categories. Thus we first 243
use the web to label a dataset ET in a relatively balanced way, then use DCNN to go through the 244
textually labeled dataset ET . Together, a dataset can be labeled by Web and DCNN via 245

EV Tweb
= {〈I , c〉 : fc (I ) ≥ α , 〈I , c〉 ∈ ET }, (5)

where EVTweb
is a filtered subset of ET where lots of noisy images are filtered out by DCNN. 246

Different from labeling by DCNN in Equation (2), the contextual labeling can filter out the majority 247
of out-of-class noisy images, and the used ET is with much higher signal-noise ratio than U , 248
which allows us to use lower threshold α to label more informative images. Figure 7 shows the 249
quantity and accuracy curve concerning confidence threshold α on images labeled by the web; it 250
is encouraging that much higher accuracy achieved even with very low confidence threshold, e.g., 251
94% accuracy is achieved when the threshold α is set to 0.1. 252

The accuracy of ET is still relatively low by simply using string match, which limits us to set 253
lower confidence threshold to absorb more diverse and informative images with keeping high 254
accuracy. Thus, we are motivated to further decrease the noise in ET . 255

The image Ii , textTi , metadata type ti , and image URL domaindi are coupled together as a single 256
data item in our dataset, labels assigned to images by DCNN are also assigned to metadata, thus 257
we can construct an automatically labeled textual dataset, i.e., 258

T + = {〈Ti , ti ,di ,yi = ci 〉 : 〈Ii , ci 〉 ∈ EV Tweb
},

T − = {〈Ti , ti ,di ,yi = C + 1〉 : Ii ∈ NV Tweb
}, (6)
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Fig. 7. The distributions of quantity and accuracy of dataset EVTweb
across confidence threshold α after

applying visual restriction to candidate dataset ET .

whereNV Tweb
= {〈I , c〉 : fc (I ) < β, 〈I , c〉 ∈ ET , β � α } contains noisy images for each category by259

string match. Inspired by previous work on sentence classification [13], we train a two-layer fully260
connected network to categorize textual metadata at semantic level. The input to the network is261
the combination of one hot representation of metadata type ti , image URL domain di , and bigrams262
inTi . As Figure 6 shows, the metadata type ti is a useful prior to the text classification task. Mean-263
while, we also found that there are some special websites on which the vast majority of images264
are relevant to some specific categories, e.g., farnhamanglingsociety.com is a website about fishing265
and lots of images about tench can be found on this website. The first layer of the network gen-266
erates embedding representation for inputs with weight matrix E, and the second layer classifies267
into categories based on the representation with weight matrixW using softmax regression,268

p (yi = c | Ti , ti ,di ) =
e f (yi=c |Ti ,ti ,di )∑C+1

k=1 e
f (y=k |Ti ,ti ,di )

,

f (y = k | Ti , ti ,di ) =

(
Wk

∑
sj ⊆Ti

E · sj+E · ti+E · di

|Ti | + 2

)
. (7)

The model is trained by minimizing269

− 1

N

N∑
i=1

C+1∑
k=1

1{yi = k } logp (yi = k | Ti , ti ,di ), (8)

where N = |EV Tweb
| + |NV Tweb

|. We train this model by using stochastic gradient descent and a270
linear decaying learning rate. As a result, a new dataset EV Tweb+

labeled by our text classification271
model can be constructed:272

ETweb+
= {〈I , c〉 :p (y = c | Ti , ti ,di ) > 0.5,

i ∈ {1, . . . , |W|}, c ∈ {1, . . . ,C}}. (9)

The textual classification model can categorize the metadata according to the meaning of the cate-273
gory and the contextual information from sentences. As a result, many semantic ambiguous noisy274
images can be detected and filtered out. The experimental results show that the accuracy of image275
set ETweb+

is 71.5%, which is significantly higher than ET whose accuracy is only 21.3%. Naturally,276
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Fig. 8. The number of images per category of the ILSVRC-2012 dataset and the dataset automatically aug-

mented from massive web images for ILSVRC-2012.

a new dataset jointly constrained by DCNN and text classification model can be constructed: 277

EVTweb+
= {〈I , c〉 : fc (I ) ≥ α ′, 〈I , c〉 ∈ ETweb+

}, (10)

where α ′ < α . The high-performance text classification model makes it possible to decrease the 278
visual threshold from α to α ′, and to mine a more diverse and larger scale dataset without accuracy 279
dropping, e.g., 93.8% accuracy is achieved when α ′ = 0.01. Finally, we get a dataset labeled by the 280
web and DCNN jointly, 281

EV T = EV Tweb

⋃
EVTweb+

. (11)

Figure 3 shows snapshots of human-labeled dataset ImageNet and four automatically con- 282
structed datasets by different methods. Compare to the dataset labeled only by DCNN or the web, 283
the dataset constructed jointly by DCNN and the web has higher accuracy and diversity. 284

4 EXPERIMENTAL RESULTS 285

In our experiments, we augmented the ILSVRC-2012 training set (D1K
ImaдeN et ) based on our pro- 286

posed method. We first trained an AlexNet onD1K
ImaдeN et that will be used for labeling and as the 287

baseline for comparing, then use this DCNN for labeling a web-labeled dataset ET , which con- 288
tains 186.4 million images. All of these images in ET are collected from the index of Bing Image 289
Search Engine, which crawled images from the whole web. An optimized text-matching algorithm 290
is applied into the map-reduce framework to collect the images for ET efficiently. Those images 291
before ranking of image search engine are used to avoid bias introduced by the search engine. At 292
last, the text classifier trained on metadata of labeled images were used to mine more informative 293
images. For categories with more than 15,000 images, we keep 15,000 images by random sampling. 294
Finally, there are 12.5 million images left in the augmented ILSVRC-2012. Figure 8 summarizes the 295
statistics of the human-labeled ILSVRC-2012 dataset and our automatically labeled dataset; we can 296
find that our method significantly increases the scale of the dataset. This automatically augmented 297
dataset is named AutoDA and is available for download in the link as introduced in Section 1. 298

It is worth it to note that the main time cost of our method is computing confidence scores using 299
DCNN. Each candidate image in ET has to go through the feed-forward pass of the DCNN, and 300
186 million candidate images cost 186 million feed-forward passes of the DCNN in total. The cost 301
roughly equals to training the DCNN on 1.2 million ILSVRC images for 80 epochs (i.e., each image 302
does feed-forward and back-propagation 80 times). 303

In addition to quantity, quality is another import factor for a useful dataset. The work of Nizar 304
et al. [24] has tried to evaluate the DCNN’s robustness to noise. They injected noise into the 305
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Fig. 9. The distributions of confidence score across the percent of images in AutoDA.

training dataset of two different kinds of DCNN architecture including AlexNet and GoogLeNet for306
ILSVRC task. The experimental results proved that a low percentage of noise (<20%) induces only307
a moderate reduction in classification performance. However, the model trained on a high per-308
centage of noise (≥20%) tends to a significant performance drop. In this article, we try to collect a309
dataset with a high ratio between classification performance gain and dataset scale. Thus we care-310
fully selected the hyper-parameter α = 0.1, α ′ = 0.01 for our AutoDA dataset to keep the amount311
of noise less than 20%, meanwhile, ensure the classification performance should be significantly312
improved by using as little amount of augmented images as possible. At last, we evaluated the ac-313
curacy of our finally constructed dataset AutoDA by randomly sampling 100 images per category314
for manual judgment. The results show that the average accuracy of AutoDA is nearly 94%.315

As we know, images labeled by a higher confidence score of DCNN are usually not informative316
for improving the performance of DCNN further. We counted the number of images with low317
confidence score and images with high confidence score in Figure 9. We can find that there are318
nearly 28% of images whose confidence score are lower than 0.1. These images with low confidence319
score are usually much more difficult for DCNN training, and the image representations learned320
from these images have much better generalization ability. We will evaluate the quality of our321
augmented dataset according to the image representations learned from the augmented dataset in322
the following sections.323

4.1 Image Classification324

To quantitatively investigate AutoDA, we train the object recognition models from scratch on our325
augmented dataset and evaluate the trained models on the ILSVRC-2012 validation set. The test326
accuracy of the models on the ILSVRC-2012 validation set is used as the performance metric of the327
dataset quality. Although most of the categories in AutoDA have more than 10,000 images, there328
are still several rare categories contain fewer than 6,000 images as shown in Figure 8. Considering329
that an unbalanced dataset for training can lead to poor performance since the validation set is330
a balanced one, we balance the distribution of the augmented dataset by subsampling categories331
with more than 6,000 images and construct a balanced dataset E1K

VT with 5.7 million of images from332
AutoDA.333

Both of AlexNet and ResNet-50 are used for evaluating the quality of our constructed dataset. We334
followed the standard configuration reported in Reference [18] and [10] for AlexNet and ResNet-50335
respectively. The traditional data augmentation methods such as mirror transformation, random336
cropping are equipped during training for all of the image recognition models in this article. For337
ResNet-50 training, we also used color shifting and random image resizing (the short side in the338
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Table 1. Single-Crop Top-1 (top-5) Accuracy of AlexNet Trained on Human-Labeled

Datasets and Augmented Datasets

DCNN #Iters D1K
ImageNet E1K

VT

E1K
VT
∪ D1K

ImageNet

Merge Merge (w/o dropout)

AlexNet
0.4M 56.15 (78.11) 51.99 (73.86) 56.48 (79.45) 59.90 (81.17)
2.0M 60.36 (82.38) 56.58 (78.57) 62.71 (83.71) 61.72 (82.62)

ResNet-50
0.5M 74.55 (92.06) 67.25 (85.99) 75.57 (91.83) -
2.5M 74.44 (92.11) 70.17 (88.09) 77.36 (93.29) -

Table 2. Ten-crop Top-1 (Top-5) Accuracy of AlexNet Trained on Human Labeled

Datasets and Augmented Datasets

DCNN Testing Crop D1K
ImageNet E1K

VT

E1K
V T
∪ D1K

ImageNet

Merge Merge (w/o dropout)

AlexNet
Central 60.36 (82.38) 56.58 (78.57) 62.71 (83.71) 61.72 (82.62)
10-crop 63.04 (84.14) 58.40 (79.87) 65.21 (85.50) 64.90 (84.66)

ResNet-50
Central 74.44 (92.11) 70.17 (88.09) 77.36 (93.29) -
10-crop 76.12 (93.01) 71.10 (88.68) 78.92 (94.25) -

range of [256, 480]) for data augmentation. Caffe toolkit is used for training and testing. To achieve 339
closer top-1 accuracy with the reported ResNet-50 performance, we implemented a torchlike batch 340
normalization layer for Caffe to replace Caffe’s original batch normalization layer. 341

The experimental results in Table 1 show that the top-1 and top-5 classification accuracy on the 342
validation set of ILSVRC-2012 with a single-crop prediction. We found that classification perfor- 343
mance to a large extent is affected by the number of training iterations. Models training on larger 344
training datasets need more iterations to be fully converged. 345

We further investigate whether the better model design and automatically labeled larger dataset 346
can boost recognition performance together. Here, we choose ResNet-50 [10] which performs 347
much better than AlexNet on ILSVRC-2012. Table 1 reports the results, where ResNet-50 con- 348
sistently outperforms AlexNet as expected, and ResNet-50 also improves itself by using the au- 349
tomatically labeled data, which demonstrates that better model design and larger automatically 350
labeled dataset can together boost the performance further. 351

Best performance is achieved on both AlexNet and ResNet-50 by merging the human-labeled 352
dataset and augmented dataset. It demonstrates that well-trained DCNNs can automatically label 353
more useful images from the web and improve themselves further. It should also be noted that the 354
augmented dataset E1K

V T is labeled by a low-performance AlexNet whose top-1 accuracy is 56.15%, 355
but the augmented dataset can still boost a high-performance ResNet-50 from 74.55% to 77.36%. 356
We list the classification accuracy of 10-crop testing in Table 2, the performance of ResNet-50 357
trained on the merged dataset is even better than the performance of ResNet-152 reported in 358
Reference [10]. For practical applications, it means that we can apply smaller model like ResNet-50 359
trained on automatically augmented dataset instead of a bigger model like ResNet-152 trained on 360
limited human-labeled dataset to save lots of computing resources. 361

We also evaluated the performance of DCNN without dropout layers. The experimental results 362
in Table 1 show that the DCNN without dropout layers can converge faster, the influence of overfit- 363
ting is alleviated, and better performance is achieved thanks to the large-scale augmented dataset. 364
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Table 3. Single-Crop Top-1 Accuracy

of DCNNs Trained on Augmented Datasets

without Using Contextual Information

from the Web

DImageNet

E1K
V
∪ DImageNet

α = 0.5 α = 0.7 α = 0.9

60.36 58.92 59.78 60.06

Fig. 10. The distributions of top-10 frequent domains in human-labeled datasets DImageNet and the auto-

matically labeled datasets E1K
VT

, respectively.

To investigate how the web labeling influences the quality of constructed dataset, we compare365
the performance of DCNNs trained on E1K

V and E1K
V T . Since the accuracy of E1K

V heavily relies on the366
confidence threshold α as shown in Figure 1, we try three different settings with α ∈ {0, 5, 0.7, 0.9}367
for constructing E1K

V in this experiment. The experimental results in Table 3 show the performance368
of DCNN trained on E1K

V ∪ D
1K
ImageNet is improved by increasing the confidence threshold since369

higher confidence threshold can lead to a more accurate dataset. But even with a high confidence370
threshold like 0.9, the overall accuracy of the E1K

V is still relatively low as we show in Figure 1.371
Moreover, the visual patterns in images collected by high confidence threshold usually tend to372
be similar. As a result, the newly added dataset E1K

V does not help the original dataset to achieve373
higher performance but hurts the performance. In general, the performance of DCNNs trained with374
E1K

V is lower than the DCNN trained on D1K
ImageNet, which means that DCNN still cannot improve375

itself by self-labeling from open-ended image pool without using contextual information from the376
web.377

4.2 Dataset Analysis378

The performance by only using the automatically constructed dataset is still lower than the human-379
labeled dataset as shown in Tables 1 and 2.380

We find that the performance gap comes from the distribution difference between the two381
datasets ImageNet collected about 10 years ago where visual appearance of many categories are382
changed over time, especially some man-made categories such as monitor and table lamp. Also,383
after we parse the URL domains of images in ImageNet, we find Flickr is the major source of384
ImageNet, while our augmented dataset is from a wider range of websites where some are even385
not existing during ImageNet collecting such as Pinterest.com. Figure 10 shows the difference of386
domain distributions of the image source of ImageNet and our augmented dataset, respectively.387
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Fig. 11. Images in E1K
VT

, which are sorted by the output of fcritic. Images in the left figure are all with high

value, which means their image style is similar to ImageNet, while images with low fcritic are shown in the

right figure.

Table 4. Single-Crop Top-1 Accuracy

of DCNNs Trained on Human-Labeled

Datasets and Augmented Datasets

Domain #Iters
Training Data
DImageNet EVT

Natural 2.0M 68.17 69.53
Artifact 2.0M 57.05 52.23

Dog 0.4M 65.80 67.56
Bird 0.4M 82.00 86.24

4.2.1 Difference between ILSVRC-2012 and AutoDA. To systematically study the distribution 388
difference between the two datasets, we train a discriminator similar to the one used in Wasserstein 389
Generative Adversarial Network (GAN) [1] to differentiate images in ILSVRC-12 and images in our 390
dataset by maximizing the distance between DImageNet and E1K

VT : 391

Jcritic =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
Ii ∈DImageNet

fcritic (Ii ) −
∑

I
′
i ∈E1K

V T

fcritic (I
′
i )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12)

By using the trained discriminator model fcritic, we sorted the images in E1K
VT according to the 392

output value of fcritic and show the images whose styles are most different/similar with DImageNet 393
in Figure 11, and found that many images that can be easily distinguished from images in ILSVRC- 394
2012 are collected from e-commerce websites. 395

Considering the difference between ImageNet and our dataset are mainly on man-made cate- 396
gories, we split the 1,000 categories into two subsets according to WordNet ontology, one is artifact 397
set including 522 categories, the other is natural object set including 478 categories. We compare 398
DCNNs trained on these two subsets with DCNN trained on ImageNet, respectively. Also, we eval- 399
uate the performance on two fine-grained subsets of ILSVRC-2012, i.e., dogs (including 120 dog 400
breeds) and birds (including 59 bird species). Since the number of categories about dog and bird 401
is small, the recognition models of dog and bird can converge after 0.4M iters on both EV T and 402
DImageNet. Table 4 summarizes the results; our dataset achieves better performance than ImageNet 403
on natural categories since these categories have not changed much over the past decades, while 404
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Table 5. Top-1 Accuracy of DCNNs Trained on

Human-Labeled Datasets and Augmented Datasets

by Using Dense Test

Training Data
Test Data

ILSVRC 2012 Val WebVision Val

D1K
ImageNet

56.15 52.58

WebVision 47.55 57.03

E1K
V T

51.99 53.94

D1K
ImageNet

* 60.36 54.99

E1K
V T

* 56.58 57.98

The experimental results with mark ∗ are trained with 2.0M
iterations, and the others are trained with 0.4M iterations.

our dataset achieves worse performance than ImageNet on man-made categories since many im-405
ages of ImageNet are out-of-date.406

4.2.2 Dataset Bias Analysis. As we know, dataset bias often leads to overfitting and poor gen-407
eralization in the real world. Some previous works targeting at measuring the quality and bias of408
datasets, such as the work of Torralba et al. [34]. Following this work, we verify the cross-dataset409
generalization ability of our dataset. Cross-dataset generalization measures the performance of410
classifiers learned from one dataset on the other dataset. If a dataset can truly represent the real411
world, the model learned from this dataset can easily generalize to any other dataset in the same412
domain.413

We compare our augmented dataset with ILSVRC-2012 and another dataset named WebVision414
[20]. WebVision is a dataset constructed from Flickr and Google Images Search by querying the415
category names in the recent period (constructed and released in 2017). The same 1,000 categories416
as the ILSVRC-2012 dataset are used for measuring the bias of these three datasets. We first417
checked the overlap between our dataset with ILSVRC and WebVision. We try to search the418
nearest neighbors from ILSVRC + WebVision for images in our dataset, and cosine similarity419
between feature vectors extracted by a pre-trained DCNN is used for measuring the similarity420
between images. We randomly sampled 100,000 images from our dataset as the query images;421
the experimental results show that there are only nearly 13.4% images in our dataset that have422
similar images in ILSVRC/WebVision dataset with cosine similarity larger than 0.9. It means that423
the overlap between our dataset and WebVision/ILSVRC-2012 is not heavy, many new/unseen424
images are collected in our dataset.425

Table 5 shows the classification error rates. Each dataset produces a DCNN using its training set,426
and then evaluates the trained model on a test set from different datasets. In all of the cases, the427
best performance is achieved by training and testing on the same dataset. The experimental results428
show that our augmented dataset has better performance than ILSVRC-2012 on the validation set of429
WebVision. Moreover, our augmented dataset also achieves better performance than WebVision on430
human-labeled image dataset ILSVRC-2012. The bias between ILSVRC-2012 and WebVision may431
be due to two factors. One is the main body of ImageNet was collected during a limited and specific432
period; this can result in some classes becoming dated over time, as we mentioned in Section 4.2.433
The other reason is that ImageNet is collected by multiple annotators, which may involuntarily434
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Table 6. PASCAL VOC 2007 Object Classification Results

DCNN Dataset aero bike bird boat bott bus car cat chai cow tabl dog horse mbike person plan sheep sofa train tv mAP

AlexNet
ILSVRC 88.6 82.2 84.7 81.7 33.5 73.7 85.7 84.2 58.2 59.9 72.7 78.3 88.6 77.8 93.0 49.8 75.7 59.4 89.0 68.5 74.1

Merge 91.5 83.6 88.2 83.7 37.4 76.1 86.5 87.0 58.8 67.3 72.5 83.3 89.9 81.4 93.7 51.9 77.4 62.8 90.5 68.8 76.6

ResNet-50
ILSVRC 98.4 93.1 94.4 92.5 57.1 85.8 91.9 94.6 68.4 83.5 83.5 93.1 93.7 88.8 95.7 62.9 87.1 76.0 96.8 82.2 86.0

Merge 99.1 94.0 95.3 94.4 58.6 89.3 92.2 95.0 69.7 88.2 84.0 94.6 94.9 90.8 96.2 61.8 91.0 74.9 97.3 84.3 87.3

inject some of their views and bias on object categories. Meanwhile, the bias of WebVision is 435
observed since the model trained on WebVision has poor performance on the validation set of 436
ILSVRC-2012. The bias of WebVision may be due to the bias of the source of images, since search 437
engine and Flickr have their own bias on the style of images. The search engine usually tends to 438
popular images, while Flickr has its own styled capture bias. Overall, our dataset generalizes much 439
better than the other two datasets; it means that our automatically constructed dataset has better 440
ability to represent the real world. 441

Considering the combination of EVT leads to a significant performance improvement as shown 442
in Tables 1 and 2, we also try to combine the WebVison dataset with ILSVRC-2012 dataset. The 443
experimental results show that introducing images of WebVision into ILSVRC-2012 leads to 4.5%, 444
5.1% performance drop for AlexNet and ResNet50, respectively, on ILSVRC-2012’s validation set. 445
We also try to merge our dataset with the WebVision dataset too, but it still results in a poor 446
performance. It is mainly due to the bias and unbalance distributions of WebVision. Moreover, the 447
WebVision dataset is designed for learning visual representation from noisy web data, and there 448
are lots of noise images included in the WebVision dataset. 449

4.3 Evaluation of the Visual Representations 450

We also try to look into the power of data for visual representation learning. We evaluate the 451
learned representations on two tasks: image classification and image retrieval. 452

4.3.1 Results of PASCAL VOC Object Classification. The Pascal VOC 2007 object classification 453
task contains nearly 10,000 images of 20 classes including artifact and natural objects. The target 454
objects in images are not centered, and, in general, the appearance of objects in PASCAL VOC 2007 455
is perceived to be more challenging than ILSVRC. 456

Following the experimental settings described in the work of Ali et al. [28], we first extracted 457
the outputs of second last layer of AlexNet and the last pooling layer of ResNet as features for 458
images in PASCAL VOC 2007 by CNN models learned on datasetDImageNet and EV T , respectively. 459
The extracted feature vector of each image is further L2 normalized to unit length. Then we trained 460
linear SVM models for all classes based on the normalized feature vectors. The results shown in 461
Table 6 proved that the large-scale dataset augmented from massive web images is helpful to learn 462
more powerful image representations for visual recognition task. 463

4.3.2 Results of MSR-Bing Grand Challenge. Inspired by the success of feature extractors in 464
DCNNs learned from ILSVRC-2012, we also try to compare the generalization ability of feature 465
extractors learned from human-labeled ILSVRC-2012 and our augmented dataset. To evaluate the 466
quality of feature extractors more comprehensively, we test the performance of the feature extrac- 467
tors on an open domain image retrieval task—MSR-Bing Grand Challenge [12]. 468

The MSR-Bing Grand Challenge task provides a training set including 11.7 million queries and 469
1 million images, a test set including 1,000 queries and 79,665 images. It is required to learn a 470
ranking model based on the training set and then rank images for each query in the test set, where 471
Normalized Discounted Cumulative Gain (NDCG) is used as the evaluation metric for a ranking 472
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Fig. 12. The NDCG of CCA for image search using image representations provided by DCNNs trained on

the ILSVRC-2012 training set and augmented ILSVCR-2012 training set.

list, which is defined as473

NDCG@d = Zd

d∑
j=1

2r j − 1

loд(1 + j )
, (13)

where r j = excellent = 3, good = 2, bad = 0 is the manually judged relevance for an image ranked474
at j with respect to the query, Zd is a normalization factor to make the score to be 1 for an ideal475
case. The performance is measured by average NDCG@d on all queries in the test set.476

We use Canonical Correlation Analysis (CCA) [9] as the basic ranking model and represent a477
query with bag-of-textual-words. For images, we use the outputs of the last but one fully-connected478
layer of a DCNN as the image representation, and two DCNNs trained on ILSVRC-2012 and aug-479
mented ILSVRC-2012 will be used. Figure 12 compares the performance of ranking results us-480
ing image representations provided by the two DCNNs, where the DCNN trained on augmented481
ILSVRC-2012 achieves consistently better performance, which further demonstrates the general-482
ization ability of model learned from the automatically augmented dataset.483

5 CONCLUSION484

In this article, we propose a method to do automatic dataset augmentation, where both the web and485
DCNN are used. Specifically, the web provides massive images with rich contextual information,486
while well-trained DCNNs are used to label these images and filter out noisy images. Meanwhile,487
the rich contextual information from the web ensures DCNN to achieve high labeling accuracy488
with relatively low confidence threshold. Together, we can augment labeled image datasets in489
a scalable, accurate, and informative way. Extensive experiments demonstrate that well-trained490
DCNNs can automatically label images from the web and further improve themselves with the491
automatically labeled datasets. We hope the automatically constructed large-scale datasets with492
rich contextual information will help further research in large neural networks.493
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